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1 Introduction

Geographical wage differentials are large and persistent, despite large migration flows.  There

are also large geographical differences in welfare benefits, and policy-makers express concerns

that these differences might create "welfare magnets" in some locations.  We are interested in the

extent to which migration flows can be explained by differentials in wages and welfare benefits.

We model individual decisions to migrate as a job search problem in which welfare benefits or

other alternative sources of income act as a floor, insuring workers against bad job search

outcomes.  This differs from the standard job search model in which unemployment benefits are

treated as a subsidy received while search continues.  In our model, welfare provides a safety net

in case the search fails.  A worker can draw a wage only by visiting a location, thereby incurring a

moving cost.  Locations are distinguished by known differences in mean wages, amenity values

and alternative income sources.  A worker starts the life-cycle in some home location and must

determine the optimal sequence of moves before settling down.  There is a two-dimensional

ranking of locations, ex ante: some places have high mean wages, and others have attractive

fallback options (both adjusted for amenity values).  In addition we allow for a bias in favor of the

home location.

The decision problem is too complicated to be solved analytically (although the well-known

Gittins index results can be extended to obtain a partial characterization of the optimal policy). 

We proceed by using a discrete approximation that can be solved numerically, following Rust

(1994).  The parameters of the model include a discount factor, a risk aversion coefficient and a

home premium summarizing individual preferences; moving costs, including a fixed cost and a

cost that is proportional to distance; means and variances of wages in each location; a relative

variance parameter governing the extent to which individual wage offers are correlated across

locations and a persistence parameter governing the relative importance of permanent and

transitory components of wages.  The model is used to interpret migration patterns found in the

NLSY, with particular attention to return and repeat migration in the early stages of the life cycle.



2 These data can be found at http://www.ipums.umn.edu.  There are obvious sample size trade-offs among the
definition of each locality and the fineness of the subpopulation group under consideration.  The finest
geographical unit recorded in the 1980 PUMS is the county group — a region with a population of 100,000 or
more.  Approximately 350 counties are uniquely identified in the 1980 PUMS as county groups.  Yet the
relationship between most counties and their county groups is more complicated: county groups may include
several complete counties or parts of several counties, and may even cross state boundaries.  To make matters
worse, the geographical unit of the 1990 Census, the PUMA, although conceptually similar, is definitionally quite
different from the county group.   Connecting geographical regions below the state level between the 1980 and
1990 Censuses is a nontrivial task.  Because of these complications we analyze wages across SMSAs.

3 The dispersion of wages adjusted for differences in living costs is presumably less than the unadjusted
dispersion, but it is unlikely that this would change the conclusion that geographical wage differentials are large. 
For example, the National Research Council (1995) computed housing cost indices for 9 regions and 5 city size
classes, using the 1990 Census, and found that the index for the most expensive locations (metropolitan areas of
more than 2.5 million people in the New England states or the Pacific states) was about 20% above the mean level,
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2 Geographical Wage Differentials and Migration Flows

We begin with some descriptive statistics on wage differentials across metropolitan areas in

the United States, using data for white workers from the Census Public Use Microdata Series

(PUMS)2.  We use a 3-level grouping of education (high school, some college, and college plus);

individuals still enrolled in school and those with less than a high-school education are excluded. 

Because we are primarily interested in migration decisions of workers early in the life-cycle, we

use 10-year age groups for each educational level (high school: ages 19-28; some college: ages

21-30; and college plus: ages 23-32).  We also impose two restrictions on labor supply: (i)

average hours per week must be more than 35 hours; and (ii) weeks worked must be fifty or

more.  We have yet not made any adjustment for cost of living differences between cities.  Given

that these differences to some extent merely capitalize differences in amenity values, the

appropriate adjustment is not obvious, but no adjustment is surely not the right answer.  One

possibility, following the recommendations of the National Research Council (1995), is to adjust

for differences in housing costs, on the grounds that these differences account for a large

proportion of the variation in overall living costs, because the geographic variation in housing

prices is large relative to the variation in other prices, and because about one third of the typical

worker’s income is spent on housing.

The SMSA wage distributions are summarized in Figures 1-3 and in Table 1. The dispersion

of wages across locations is large.3  Real wages fell for high-school graduates



and the index for the least expensive location (areas with less than 250,000 people in Mississippi and adjacent
states) was about 20% below the mean level.
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 between 1979 and 1989, while real wages for college graduates increased slightly.

Table 1: Summary Statistics

Median SMSA Wages by Education, 1979 and 1989 

Obs Media

n

90/10 Min 10% 25% 75% 90% Max

1980 Census
High school 93 8.20 1.37 4.83 6.66 7.39 8.46 9.11 12.39 

Some College  52 9.68 1.28 7.54 8.35 8.86 10.2

6

10.7

0

11.96

College  58 12.35 1.25 10.6

8

11.1

7

11.6

8

13.1

4

13.9

8

15.26

1990 Census
High school  68 7.27 1.42 4.81 6.23 6.73 8.43 8.84 9.89 

Some College  68 8.77 1.44 7.12 7.69 8.17 9.62 11.0

6

12.02 

College  65 12.50 1.31 10.3

4

11.3

1

12.0

2

13.4

6

14.8

4

16.19

The table includes only those SMSAs with more than 50 observations in the relevant

education group.  The 1979 wages are converted to 1989 dollars using the CPI.

Figure 2 shows that places that have high wages for one education group generally have high

wages for the other groups as well.  Figure 3 shows that there is a strong positive correlation

between location-specific wages in 1989 and in 1979, especially for college graduates.  This

persistence is important because in our model, migration decisions are made in response to known

and stable differences in wage distributions across locations.  Such a model is open to the obvious

theoretical objection that if wages adjust rapidly, the driving force behind individual migration



4Blanchard and Katz (1992, p.2), using average hourly earnings of production workers in manufacturing, by
state, from the BLS establishment survey, describe a pattern of “strong but quite gradual convergence of state
relative wages over the last 40 years.”  For example, using a univariate AR(4) model with annual data, they find
that the half-life of a unit shock to the relative wage is more than 10 years.  This suggests that our results should
not be too sensitive to the use of a point-in-time wage measure.  Similar findings were reported earlier by Barro
and Sala-i-Martin (1991) and by Topel (1986).  
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decisions will not be seen in the data.  Our view is that wage adjustment is in fact slow enough so

that the cross-section wage measures are adequate.4

2.1 Migration Patterns in the NLSY

Given that the census data show large and persistent geographical differences in wages, we

turn next to panel data on migration decisions and wage outcomes.  The basic empirical question

is the extent to which people actually move for the purpose of improving their wage prospects. 

Work by Keane and Wolpin (1997) and by Neal (1999) indicates that individuals make

surprisingly sophisticated calculations regarding schooling and occupational choices.  Given the

magnitude of geographical wage differentials, and given the findings of Topel (1986) and

Blanchard and Katz (1992) regarding the responsiveness of migration flows to local labor market

conditions, we would expect to find that wage differentials play an important role in individual

migration decisions.

The National Longitudinal Survey of Youth (NLSY) is one of the primary sources of

longitudinal information on income, program participation and migration.  Initially fielded in 1979,

annually through 1994, and biannually since 1994, the NLSY was designed to be a nationally

representative sample of American youth, ages 14 to 22 as of January, 1979.  The survey contains

an oversample of minorities and economically disadvantaged white youth living in the United

States as well as a subsample of individuals serving in the military.   Each wave obtained detailed

information on earnings, income and assets, household composition, employment, marital history,

training, educational status and attainment, and geographic residence.  The survey records county

and state (or country if outside the United States) for each residence at birth, at age 14, and for

each residence for the first three waves of the NLSY (1979-1982), and annually (at the time of the

survey) thereafter.  We use the residence at the interview date to define migration.  

  Using data from the 1979-92 waves, we pick up respondents as they first leave school.  We

impose few selection rules for inclusion in our sample.  For obvious reasons we exclude



5Some people are merely returning home after leaving college: we have not yet tabulated these moves.
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observations from the military subsample.  Otherwise, the primary reason for exclusion was

missing information on either race or sex or geographic location in the two years following exit

from school (those who never report leaving school or who leave school after 1990 are also

excluded). Our sample contains 8,257 individuals.  

Interstate migration flows are summarized in Table 2, which reports the number of moves in

the first 5 years after leaving school, and also the number of moves in the full sample period. 

Clearly, young people move a lot, and college-educated people move a lot more than others.5  But

the main point of the table for our purposes is the importance of return migration, and especially

migration back to the original location.  Consider a person who has already moved, and who is

moving again: what is the probability that such a person is moving back to a previous location,

and in particular to the home location?  The answer (in the bottom row of Table 2) for the home

location (state) is at least 37%.  We argue below that these flows are difficult to explain in a

behavioral model.  An interesting feature is that this homing instinct is much weaker for college

graduates than for those with less education: for example, the proportion of high school graduates

returning home is above 50%.
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Table 2: Interstate Migration Flows, NLSY
Less than

High

School

High

School Some College College

Horizon (years) 5 13 5 13 5 13 5 13
No. of people 1768 3534 1517 1435
No. of movers 334 423 598 771 327 376 441 469
Repeat moves 239 434 313 653 167 264 196 261

Percent Movers 18.9 23.9 16.9 21.8 21.6 24.8 30.7 32.7
Moves Per Mover 1.7 2.0 1.5 1.8 1.5 1.7 1.4 1.6
Return Migration

 ( % of all moves)
Return - Home 22.9 24.0 20.6 24.1 16.0 17.5 12.4 13.4
Return - Else 5.4 12.4 2.7 7.2 2.8 5.9 2.5 3.3

Movers who return home (%) 39.2 48.7 31.4 44.5 24.2 29.8 17.9 20.9
Return-Home: % of Repeat 54.8 47.5 60.1 52.5 47.3 42.4 40.3 37.5

Finally, Table 3 provides some evidence on the effects of personal characteristics and

demographic variables on the probability of moving within the first two years following school. 

In this table migration is defined as a move of more than 50 miles in either of the first two years,
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with return migrants counted as stayers.  As one would expect, marriage and children exert strong

negative influences on migration, especially for women.

Table 3: Logit Estimates

of the probability of moving more than 50 miles from the original location

in the first two years after leaving school; white workers, at least high-school

Men Women
Coefficient SE Coefficient SE

Married -0.134 0.204 -0.392 0.169

Number of children -0.350 0.270 -0.406 0.229

Weeks worked -0.023 0.005 -0.016 0.004

Some College 0.900 0.191 0.586 0.177

College graduate (16+ years) 1.743 0.177 1.033 0.170

Postgraduate (17+ years) 1.691 0.223 0.834 0.269

Longitude 0.171 0.059 0.172 0.064

Latitude -0.083 0.013 -0.049 0.013

Longitude squared (/102) -0.001 0.030 -0.084 0.033

Constant -9.607 3.002 -8.101 3.213

N 1841 1868
 2(9) 139.57 77.89

Note: Individuals who did not live in an SMSA when they left school are excluded.

Thus the migration patterns in the NLSY can be summarized as follows: (1) young people

move a lot, with more educated individuals moving more; (2) many of the repeated moves are

return moves to the home location and (3) being married or having children are significant

retardants to interstate migration, especially for women.  The prevalence of repeat and return

migration suggests that static analyses of migration will be flawed.  In the next section we present

a theoretical framework for analyzing these dynamic patterns.
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3 An Optimal Search Model of Migration

We model migration as an optimal search process.  The basic assumption is that wages are

local prices of individual skill bundles.  The individual knows the wage in the current location, but

not in other locations, and in order to determine the wage at each location, it is necessary to move

there, at some cost.  In each location there is also a fallback option, such as welfare or family

support, and the value of this is known.

Suppose there are J locations, and the random part of individual i’s wage Wij in location j is

the product of two components:

where µj is the mean log wage in location j, i is an individual effect that is fixed across locations,

and gij is a matching effect reflecting the relative demand price of i’s skill bundle in location j.  We

assume that i and {gij} j
J
=1 are independent normal random variables with zero mean.  The variance

of i is 2, and the variance of gij is 
g

2, for all j.  The unconditional distribution of Wij, before any

wages have been drawn, is denoted by Fj (this is the above lognormal distribution with i = 0). 

The fallback option is bj, and thus income in location j is yij = max [Wij,bj].  In each period there is

a chance that the current wage will be lost, and in that case the wage in the next period is a new

draw from the distribution of i and gij.  We assume that the survival probability for the wage, , is

constant across wages and locations.

We specify the moving cost as an affine function of distance:  = 0 + 1D(j,j') for j'új, where

D(j,j') is the distance from j to j'.  We assume that it is not possible to borrow money to finance a

move (e.g. lenders are not keen to advance money that will be used to put borrowers out of their

reach).  We also rule out the possibility of accumulating money over several periods to finance a

move.  This means that the only way to finance a move from i to j is to reduce consumption in the

current period by cij: with diminishing marginal utility, this means that the utility cost of moving is

high at low income levels, as we shall see.  

Migration decisions are made so as to maximize the expected discounted value of lifetime

utility, with discount factor .  The flow of utility in location j is
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Thus we are assuming constant relative risk aversion, with coefficient  $ 0.  The parameter j

captures some of the nonpecuniary differences across locations; in particular, by setting i > 0 for

some home location i, and j = 0 otherwise, we can allow each individual to have a preference for

their native location.  The model is summarized by the eight parameters ( , , , , 0, 1,
2,

g

2).

There is little hope of solving this problem analytically.  In particular, the Gittins index

solution of the multiarmed bandit problem cannot be applied because (1) there is a cost of moving

and (2) wages are correlated across locations, and the Gittins index method does not work when

either of these features is present.  But by using a discrete approximation of the wage distribution

in each location, we can compute the value function and the optimal decision rule by standard

dynamic programming methods, following Rust (1994). 

First we approximate the unconditional distribution Fj in each location by a discrete

distribution over n points, as follows.  Let Ai
j = Fj

-1(i/n) and ai
j = Fj

-1(i/n - 1/2n).  Then Fj is

approximated by a uniform distribution over the set {ai
j}i

n
=1.  In practice, we set n # 10 so as to

keep the state space tractable.  For example, if n = 10, the approximation puts probability 1/10 on

the 5th, 15th, ... 95th percentiles of the distribution Fj.  Next, we fix the support of the discrete

approximation and vary the probabilities as new information comes in, so that the state space

remains fixed over time.  Specifically, if Gj is the conditional distribution over wages in location j

after wages in some other locations have been observed, the discrete approximation puts

probability Gj(Ai
j) - Gj(Ai

j
-1) on each point ai

j.

Consider a person currently in location R, with a J-vector  summarizing what is known about

wages in all locations.  Here j is either 0 or an integer between 1 and n, with the interpretation

that if j = i > 0, then the wage in location j is known to be ai
j , and if j = 0 then the wage in

location j is still unknown, so that if the person moves to j, the wage will be ai
j with probability

Gj(Ai
j) - Gj(Ai

j
-1), for 1 # i # n.

In each period t, the wage history includes Mt # t wage draws from different locations.  Using

the assumption of lognormality, the estimate of  is given by
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and the variance of the next wage draw is given by

with 0 =  
g

2 + 2 initially.  The posterior wage distribution puts probability ps on the point

, where G is the lognormal distribution function with mean 8 and variance 2, andas ' G &1 2s&1
2n

the probabilities are as follows

where  is the standard normal distribution function.

The value function can be written in recursive form as

where yj( ) = max[bj,a
j ].  The optimal decision rule is

We compute V by value function iteration.  It is convenient to use V(R, ) / 0 as the initial

estimate, so that if T is the number of iterations, the result gives the optimal policy for a T-period

horizon; thus if T represents the length of the life-cycle, there is no need to check whether the

iterations have converged to the infinite-horizon solution.
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4 Moving Costs and the Gittins Index

We model migration decisions as the solution of a bandit problem that is extended to include

moving costs and correlation across locations.  The basic tool for the analysis of bandit problems

without these extensions is the Gittens Index, which reduces the complicated dynamic

programming problem discussed above to a simple calculation of reservation wages in each

location, as if the other locations did not exist; the optimal policy is to move to the location with

the highest reservation wage, and stop when a wage is found that beats the reservation wage in

every location.  Miller (1984) applied this to the study of occupational choice; McCall and McCall

(1987) applied it to migration, but as they point out, the method works only if there is a zero cost

of moving back to a previously visited location.  Banks and Sundaram (1994) show that if every

move involves some cost, there is no generally valid way to define an index with the Gittins

properties.  We ask a more relaxed question, and obtain a positive answer: can the Gittens index

be used to simplify the calculation of the value function? 

We present a preliminary result, and offer conjectures about generalizations.  Suppose there

are three locations, including a current location labeled 0, and two alternative locations i and j that

have not yet been visited.  A move to a new location incurs a cost M, and a return to a previous

location incurs a cost m.  Income in location 0 is known: call this y0.  Incomes in i and j are

independent random variables.  Moving to another location takes one period, and the discount

factor is  per period.

Define the function j(x) as follows:

This is the value of moving to search location j, with x as a reservation level: the interpretation is

that x is available for sure, in case yj turns out to be low.  Note that , and)

j(x) ' F(x)<1

, so j(x) > x for x sufficiently small, and j(x) < x for x sufficiently big; thuslim
x6&4

j(x) ' Eyj&M

the function j has a unique fixed point, j.  Also j(x) $ x for x # j and j(x) # x for x $ j.  This

is the standard Gittins index calculation.  A similar calculation for location 0 would yield y0 - M,

but instead define 0 = y0 - m.

Lemma:
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0 $ Emax yj , 0 & M

Suppose 0 = max ( 0, i, j).  Then it is optimal to remain in location 0.

Proof:

Suppose not.  Without loss of generality say that it is optimal to move to location i initially.  It

will be shown that for any realization of yi, the option of moving again to location j is dominated

(either by the value of moving back to 0, or by the value of staying in i).

First, 0 $ j implies

This means that searching j with 0 as the reservation level is dominated by 0, which can be

realized by an immediate return to location 0.  Thus if it is optimal to move on to j, the reservation

level must be the value of returning to location i, which is yi - m, and this must be larger than 0,

because in order for the move to be optimal it is necessary that j( yi - m) $ 0.  Thus

yi - m $ 0 $ j.  But this means that the value of moving to j with reservation level yi - m is

dominated by yi - m, and staying in location i yields yi, which is even better.  Thus regardless of

whether 0 or yi - m is used as the reservation level, the option of searching location j is

dominated (given an initial move to location i).

Now consider the initial move to i.  Since j is dominated (by the argument just given), the

result of a move to i will be either yi or 0.  Since 0 $ i, the value of the move to i is dominated

by 0, and this in turn is dominated by y0.  Thus it is optimal to remain in location 0.

Conjectures

The above logic can potentially provide the basis for a systematic analysis of the optimal

search policy in the presence of moving costs; the analysis might also be extended to allow some

correlation in wages across locations, subject to the restriction that all locations are equally

informative about wages in other locations (as is true in the simulations discussed in Section 4

above).  We have the following conjectures.

4.1 If i = max ( 0, i, j) > y0, then it is optimal to move to location i.

4.2 The argument in the Lemma remains valid under risk aversion (just redefine everything in

terms of utilities).

4.3 The argument can be extended by induction to cover an arbitrary number of locations.



6Mean log wages are (CA,FL,IL,NY,TX) = (6.16, 6.0, 6.296, 6.242 , 6.077), and the log standard deviation is
.7766.
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5 Simulation Results

In order to make an initial assessment of whether the dynamic programming model is likely to

be useful, we have computed optimal migration decisions using monthly wage and benefit data for

five large states (California, Florida, Illinois, New York and Texas).  The wage and benefit data

are roughly the actual 1980 data for black women (all education levels), although these numbers

are used only to illustrate how the model works on realistic data for a low-wage population.  The

percentiles shown are computed from lognormal distributions with a common variance and

different means.6

Table 4 shows an optimal sequence of moves for a risk-neutral individual who begins in

Florida, and who would take a large wage cut rather than move elsewhere (  = .5).  In this

example, the wage has no common component (  = 0).  Despite the large home premium, the

optimal decision rule specifies a move unless the home wage is in the top three deciles, followed

by onward migration unless the wage is in the top two deciles in the new location.  This decision

rule illustrates the difficulty of matching the homeward migration patterns in the NLSY (as shown

in Table 2) when there is no correlation in wages across locations.  The parameters are chosen to

produce a large migration flow, even though the home location is 50% better than elsewhere. 

Moreover, since there are only 5 locations, the chances of a return to the origin are artificially

high.  Still, in a simulation of 50,000 cases using this decision rule, only 10% of all moves are

associated with returning home.



��

Table 4: Optimal Migration Decisions: Linear Utility, Large Home Premium

5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Mean b Emax Eu

FL (Home) 114 182 240 300 366 444 543 678 896 1432 520 347 575 78.4
IL IL IL IL IL IL IL Stay Stay Stay

IL 152 243 322 402 492 598 731 915 1211 1940 701 412 754 82.8
FL=543 NY NY NY NY NY NY NY NY Stay Stay

NY 144 230 305 381 466 566 692 866 1146 1834 663 486 753 83.9
IL=915 CA CA CA CA CA CA CA CA Stay Stay
IL=731 CA CA CA CA CA CA CA CA Stay Stay

CA 131 211 280 351 429 522 639 801 1061 1705 613 542 746 84.6
IL=915, NY=866 IL IL IL IL IL IL IL IL Stay Stay
IL=731, NY=866 TX TX TX TX TX TX TX TX Stay Stay

TX 125 199 261 325 396 479 583 726 956 1515 557 277 581 76.7
IL=731, NY=866 NY NY NY NY NY NY NY NY Stay Stay

TX 125 199 261 325 396 479 583 726 956 1515 557 277 581 76.7
IL=731, NY=692 FL FL FL FL FL FL FL FL Stay Stay

Explanation: This is a (small) piece of the optimal decision rule (with a 40-period horizon),

showing a sequence of optimal responses to wage draws in successive locations, for a native

of Florida.  The cost per move is 250. the discount factor is  = .9, and the persistence

parameter is  = .975.  The home premium is 50%.

5.1 The Welfare Trap

The effects of risk aversion on migration decisions are illustrated in Table 5, which shows the

initial decision for each wage decile in each location.  The most surprising result is the

nonmonotonicity of the migration decision.  The most attractive location is California: anyone

who moves goes to California, and no one leaves there.  The least attractive location is Texas, but

those who draw wages above the 70th percentile of the Texas wage distribution find it optimal to

stay (although they would ultimately leave because wages are not permanent, since the persistence

parameter  is set to .975).  This is as expected.  But those who draw the lowest wages in Texas

or Florida also find it optimal to stay, even though they would leave if they had drawn a higher

wage.
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Table 5: Optimal Migration Decisions: The Welfare Trap

5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Mean bEmax Eu
CA 131 211 280 351 429 522 639 801 1061 1705 613 542 74684.6

Stay Stay Stay Stay Stay Stay Stay Stay Stay Stay
FL 114 182 240 300 366 444 543 678 896 1432 520 347 57578.4

Stay Stay Stay Stay Stay CA CA Stay Stay Stay
IL 152 243 322 402 492 598 731 915 1211 1940 701 412 75482.8

CA CA CA CA CA Stay Stay Stay Stay Stay
NY 144 230 305 381 466 566 692 866 1146 1834 663 486 75383.9

CA CA CA CA CA Stay Stay Stay Stay Stay
TX 125 199 261 325 396 479 583 726 956 1515 557 277 58176.7

Stay Stay Stay Stay CA CA CA Stay Stay Stay

Explanation: This shows the initial migration decision when a wage has been drawn in the
home location, and wages in other locations are unknown.  The utility function has
constant relative risk aversion, with  = 2.  The cost per move is 300, with  = .9,  = .975
and no home premium.

Although at first sight this result may look wrong, there is a simple explanation.  The model

does not allow borrowing, so in order to pay the cost of moving (set to $300 in this example),

consumption must be reduced in the current period.  Since we have assumed that the marginal

utility of consumption is diminishing, the utility cost of any given consumption change is higher

when consumption is low.  The utility function is assumed to be of the form u(y) = -1/y, and for

convenience we report utilities as U(y) = 100(1 - 100/y).  In these units, the cost of moving from

Florida for a welfare recipient is U(347) - U(47) = 183.9, while the gain from being on welfare in

California is U(542) - U(347) = 10.4.  Thus even though a one-time moving cost of $300 is small

in relation to a permanent gain of $195 (542 - 347), the cost-benefit calculation looks much

different in utility terms.  But with a wage of $444, the cost of moving is reduced to

U(347) - U(144) = 40.6, and then the present value of the gain exceeds the cost.

A remarkable implication of this result is that in some circumstances an increase in welfare

benefits actually causes emigration.  In fact, the simulation results show that no one chooses to

stay on welfare in New York or in Illinois, because welfare in California is more attractive, and

because the welfare benefits in New York and in Illinois are high enough to cover the utility cost

of moving.  In Texas and Florida, on the other hand, welfare recipients are caught in a kind of



��

trap: in order to finance a move, they would have to reduce consumption to such a low level that

the present value of the gains from moving would not cover the immediate cost.  If the welfare

benefit in these states were to be increased to the Illinois level, however, it would be optimal to

leave.

5.2 Learning and Return Migration

The basic difficulty in developing a forward looking model with return migration is that

individuals must decide to leave before they can decide to return to their native location.  A strong

preference for the native location provides a rationale for return migration after leaving the native

location, but of course it makes the initial move much less likely.  When wage draws in different

locations have no common component and when there is no risk aversion, return migration occurs

only after an individual has sampled nearly all other locations.

Correlation in wages across locations can potentially explain large return migration flows.

When the wage in each location has one component that is specific to the individual and another

that is specific to the location, a relatively high wage in a low-wage location indicates that the

individual-specific component may be large, implying that a move to a high-wage location is likely

to pay off.  Then if the wage drawn in the new location is relatively low, the inference is that the

wage in the initial location reflected a good match in that location, so a return move is indicated.

Table 6 shows simulated return migration statistics with and without risk aversion for various

specifications of the common wage component (parameterized by 1 = ).  When there is
σ

σ σ
η

η ε

2

2 2+

no common component, there is no tendency to return to the home location, relative to other

locations.  But as the common component becomes more important, the return migration pattern

seen in Table 2 emerges: return moves are common, with a strong tendency to return to the initial

location, rather than an intermediate location.  This table also shows that risk aversion has a

strong effect on migration decisions.  In the risk-neutral case, the migration rate is decreasing in

1, because fewer moves are needed to learn about .  The same effect is present in the risk-averse

case, but the migration rate is lower by an order of magnitude.  Moreover, the migration rate is a

U-shaped function of 1 , because when 1 is close to 1, there is very little uncertainty about wages
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in other locations, so that even a risk-averse individual is willing to move to the high-wage

location.

Table 6: Spatial Correlation, Risk Aversion and Return Migration

Simulation of 50,000 Five-Period Migration Histories

Risk-Averse (  = 2) Risk-Neutral

Common Component

Variance Share ( 1)

35% 55% 75% 95% 35% 55% 75% 95%

Moves 9,785 7,582 14,99

9

19,50

6

113,14

2

103,82

1

85,38

5

62,12

5

Return home 0 0.7% 23.5% 27.4% 7.2% 11.1% 15.2% 20.4%

Return, not home 0 0.0% 0.3% 2.0% 6.9% 6.7% 5.8% 3.1%

Onward 100% 99.3% 76.1% 70.6% 85.8% 82.2% 79.1% 76.5%

Explanation: the table summarizes optimal migration flows for alternative values of the

variance share .   The wage distributions and parameter values are as in Table 5.λ
σ

σ σ
η

η ε
1

2

2 2=
+

6 Empirical Implementation

An important limitation of the discrete dynamic programming method is that the number of

states is typically large, even if the search problem is relatively simple.  If there are J locations and

the discrete approximation of the wage distribution has n points of support, the number of states

is J(n+1)J.  In the simulation results presented above, J=5 and n=10, yielding 805,255 states. 

Although the value functions for these simulations were computed in a few hours, estimation of

the basic structural parameters (such as the coefficient of risk aversion, and the premium for the

home location) requires that the value function be computed many times.  Estimation becomes

infeasible unless the number of structural parameters is small. 

The large number of locations poses another computational challenge.  Ideally, locations

would be defined as local labor markets.  The smallest geographical unit identified in the NLS



7A random variable X is exponentially distributed if exp(-X) is uniformly distributed on [0,1].  Repeating this
yields an extreme value distribution: Y has the extreme value distribution if exp(-Y) is exponentially distributed.
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geocode file is the county, but we obviously can’t let J be the number of counties, since there are

over 3,100 counties in the U.S.  Indeed, even restricting J to the number of states still far exceeds

current computational capabilities.  To aggregate locations beyond the state level (e.g. Census

Regions) is uninterpretable; for example, we lose the ability to identify the effects of state benefit

systems.  Consequently, we define locations as states, but restrict the information available to

each individual.

6.1 Outline of the Estimation Method

We expand the model presented in Section 3 above to allow for unobserved heterogeneity in

individual payoffs.  Let  = ( 1, 2,..., J) be a vector of idiosyncratic utility adjustments that are

known to the worker before the migration decision is made in each period (but not observed by

the econometrician). We assume that each component j is drawn independently according to a

distribution function ; also, these draws are independent across individuals and over time.  The

individual’s value function is then given by

where  is the vector of unknown parameters and the expected value function  is defined byV̄

If we assume that  is the Type 1 Extreme Value distribution7 then, using arguments due to

McFadden (1973) and Rust (1987) we can show that the function  satisfiesV̄



8See van der Klaauw (1996) for another application that successfully applies a variant of this estimator. 
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where

This gives a closed form for the probability, Pr(d(j)=1 | R, ), that an individual in location R with

information  will move to location j:

The individual contribution to the likelihood function for t=1,..,T periods is then

where xt is the observed state (R, , location and wage history), dt(j) is an indicator of whether

location j is selected in period t, and R is the state transition probability.  Note that although there

is a large number of states, R has a simple structure, since it merely tracks the information

encoded in .

Although Rust (1994) showed that the maximum likelihood estimator of  is consistent and

asymptotically efficient, it requires the simultaneous solution of the value function (for given )

and zeros of the score function (for a given value function).  Consequently we use Rust’s (1994)

multi-step estimation procedure, which is also consistent and efficient.8  This method splits the

parameter vector  into sub-vectors (1, 2), such that 1 enter only through R.  The first step

consistently estimates 1; this is done independently of the dynamic programming algorithm. The

second step uses this estimate and the dynamic programming algorithm to jointly estimate the
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value function and 2.  Step three uses estimates from the first two stages to perform Newton

steps on the full likelihood function, yielding an estimator that is asympotically equivalent to the

maximum likelihood estimator.  In our application 1 includes , ,  and µj, and 2 contains , ,

, m0, and m1.

6.2 A Limited Memory Approximation

When the number of locations is moderately large, the model becomes computationally

infeasible (and will remain so, even if computers improve: for example, if a location is a State, and

the wage distribution has 5 points of support, then the number of dynamic programming states is

40414063873238203032156980022826814668800).  This is a common problem with numerical

dynamic programming models, and various devices have been proposed to deal with it.  In our

context it seems natural to use an approximation that takes advantage of the timing of migration

decisions. So far, we have assumed that information on the value of human capital in alternative

locations is permanent, and so if a location has been visited previously, the wage in that location is

known, no matter how much time has passed.  Suppose instead that migration decisions are made

only once a year, and that wage information becomes worthless after M years (because local labor

market conditions change over time).  Then if the number of locations exceeds M, it is not

possible to be fully informed about wages at all locations. This means that the number of dynamic

programming states is limited.  If there are J locations, and the wage distribution in each location

has n points of support, then the number of states is (Jn)M, since this is the number of possible M-

period histories describing the locations visited most recently, and the wages found there. Then if

J is 50 and n is 5 and M is 2, the number of states is 62,500, which is manageable.

Note that we are reducing the number of states in the most obvious way: we simply delete

most of them.  Someone who has “too much” wage information in the big state space is

reassigned to a less-informed state.  Individuals makes the same calculations as before when

deciding what to do next, and the econometrician uses the same procedure to recover the

parameters governing the individual's decisions.  There is just a shorter list of states, so two

people who have different histories may be in different states in the big model, but they are

considered to be in the same state in the reduced model.  In particular, two people who have the
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same recent history are in the same state, even if their previous histories were different (and two

people who have different wage information now may have the same wage information following

a move). 

In order to compute the likelihood function using this approximation, it is convenient to

redefine notation. Let R = (R0,R1,...RM-1) be an M-vector containing the sequence of recent locations

(beginning with the current location), and let  be the corresponding sequence containing recent

wage information.  For now, we suppress the common component of wages, and we set  = 1

(since the wage information becomes irrelevant after M periods in any case).

The probability that an individual in state (R, ) will move to location j can again be written in

the form

where vj is now defined as

with

6.3 Migration and Welfare

We will analyze the migration decisions of low income women at risk to receive AFDC.  This

is a natural application of our model, because (a) location-specific benefits in the model are most

directly related to welfare  benefits (AFDC and Food Stamps) within each state and (b) we believe

that our imperfect capital market assumptions provide a reasonable approximation for this group.
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The recent literature on welfare-induced migration is summarized by Meyer (1999).  While the

consensus view from earlier work reviewed by Moffitt (1992) was that differences in welfare

benefits across states had a significant effect on migration decisions, subsequent studies by Levine

and Zimmerman (1995) and by Walker (1994) found little or no effect.  Meyer argued that by

paying careful attention to the determinants of welfare participation, the ambiguity in these results

can be resolved in favor of a significant (but small) effect of welfare on migration.  All of these

studies relied on simple heuristic models of migration decisions, and we believe that a more

systematic analysis is warranted.  The finding in Section 5 above regarding the perverse effects of

benefits levels in the case of the welfare trap illustrates the potential gains from the use of a fully

specified model to interpret the data. 

6.2.1 Definition of the Estimation Sample

We restrict the estimation sample to women from the non-military subsample of the

NLSY79 with twelve or fewer years of education.  The observational window begins in the year

the woman is first single with a dependent child.  To be included in the estimation sample,

information on residence must be observed for at least two periods.  We follow these respondents

either until the end of their single parenthood, the end of the sample period (1992) or the first

wave they are not interviewed.  There were 1,704 people satisfying these restrictions, and we

have data on 12,051 location decisions (i.e. person-years).  The overall interstate migration rate is

2.29% per year (276 moves).

6.2.3  Monthly Earnings and Welfare Benefits 

For each respondent, monthly earnings equals the sum of annual wage and salary income

for all years residing in that state divided by total weeks worked (again for all periods in the state)

times 4.  Monthly benefits correspond to the combined 1980 AFDC and Food Stamp benefits for

a family of 3.  The Consumer Price Index for Urban Workers 1983-1984 = 100.0 is used to

deflate nominal earnings and benefits into real terms.  



Table 8: Wages and Benefits, by State

Single Women with Children, NLSY, $1980
Observations Benefits Mean Wage 85-th Percentile

Alabama 456 4,068 4,605 7,576
Alaska 80 9,864 11,273 18,548
Arizona 113 5,124 9,046 14,884
Arkansas 238 4,692 4,794 7,888
California 1,306 7,896 5,777 9,505
Colorado 164 6,024 8,032 13,216
Connecticut 316 7,908 9,067 14,919
Delaware 11 5,784 4,823 12,097
Dc 127 5,988 8,835 14,537
Florida 493 5,052 6,752 11,109
Georgia 777 4,728 5,349 8,801
Hawaii 5 10,896 4,823 5,820
Idaho 4 6,360 4,823 611
Illinois 392 6,000 5,651 9,298
Indiana 135 5,664 5,102 8,394
Iowa 39 6,744 1,953 3,213
Kansas 85 6,588 6,317 10,394
Kentucky 64 4,980 3,661 6,024
Louisiana 159 4,560 4,908 8,076
Maine 0 5,927 4,823
Maryland 148 5,820 8,136 13,387
Massachusetts 243 6,936 6,420 10,563
Michigan 502 7,404 5,429 8,932
Minnesota 138 7,308 5,649 9,294
Mississippi 199 3,744 5,841 9,611
Missouri 426 5,592 3,748 6,167
Montana 79 5,712 4,858 7,993
Nebraska 33 6,228 4,716 7,759
Nevada 7 5,736 4,823 10,363
New Hampshire 0 6,597 4,823
New Jersey 371 6,744 8,253 13,579
New Mexico 93 5,316 5,392 8,871
New York 739 7,080 5,350 8,803
North Carolina 484 5,028 6,679 10,989
North Dakota 0 6,466 4,823
Ohio 754 5,748 6,372 10,484
Oklahoma 96 5,940 7,823 12,872
Oregon 45 6,480 4,424 7,279
Pennsylvania 382 6,456 7,764 12,774
Rhode Island 13 6,540 4,823 10,949
South Carolina 485 4,224 6,377 10,493
South Dakota 17 6,336 4,823 8,030
Tennessee 208 4,116 4,991 8,212
Texas 893 4,032 6,975 11,477
Utah 29 6,744 4,823 4,839
Vermont 43 8,088 7,400 12,176
Virginia 284 6,228 5,418 8,915
Washington 145 7,728 5,532 9,102
West Virginia 88 5,172 3,431 5,645
Wisconsin 404 7,584 5,545 9,124
Wyoming 1 6,276 4,823 45
All States 12,313 6,162 5,818



9 In the presence of learning, the estimation procedure must recognize that the first location observed in the
observational window is not necessarily the first location the individual has worked (and received a wage draw). 
With access to panel data, we can use information prior to the observational window to correctly estimate the
parameters of the subjective wage distribution at the start of the observational window.
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For this stage we relax the restriction that a respondent had to be observed in two

consecutive waves to obtain as many observation as possible to estimate the parameters of the

distributions in each state. Table 8 reports real monthly benefit levels and descriptive statistics on

annual earnings distributions.  A notable feature of these data is that less than 50% of single

women with children earn more than the benefit level.

The model assumes that individuals who receive wage offers less than the monthly benefit

do not work, but accept the benefits.  As Table 9 reveals, a large number of respondents have

earnings that fall short of the monthly benefit.  While the difference could reflect measurement

errors in either benefits or earnings, the large gap suggests the difference is real and are consistent

with program take-up rates far below 100 percent.  Future work will investigate this difference,

but for this set of estimates we maintain the full take-up of benefits.  We estimate the parameters

of the earnings distribution by assuming lognormality and using the upper tail of the distribution to

estimate the mean and variance. The state specific means are shown in Table 8; the standard

deviation of log wages is assumed constant across states, with an estimated value of 0.7566. We

use these estimates in the second stage estimation of the preference and moving cost parameters. 

6.2.4  Partial Likelihood Estimates (Stage 2) 

We condition on the estimated parameters of the log earnings distribution for each state

and the state-specific welfare benefits, and estimate the partial likelihood to recover parameter

estimates of the fixed cost of moving ( 0) and the curvature of the single-period utility function

( ).  We fix beta at 0.9 and set the per-mile moving cost 1 the home premium  to zero.    To

avoid an initial conditions problem, we assume there is no common component or learning.9  

Table 9 reports preliminary parameter estimates for a 3-point approximation  
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Table 9
Partial Likelihood Estimates 

Single Women with a Dependent Child
3-Point approximation of
earnings distribution

Fixed cost of moving 0 $3,742.72
Risk aversion 0.54

Partial Loglikelihood value -1575.4981

Number of observations 10,347

Fixed parameters:  = 0.9, 
 = 1.0,  =  0

The estimated fixed cost of moving is just below the value of benefits in Mississippi.  This

is the upper limit for the fixed cost parameter for this choice set; since any larger value would

yield negative utility and zero predicted probability of moving for a Mississippi welfare recipient,

and in fact three welfare recipients did move from Mississippi.  This indicates that the model is

too tightly specified.  Indeed, simulations using the estimated parameters predict migration rates

that are much higher than those seen in the data.  The model is forced to interpret the low

migration rate as the result of drawing utility shocks from the tail of the extreme value

distribution; when more likely shocks are used in the simulations, the migration rate is much

higher.  This indicates that it is necessary to allow for heterogeneity in moving costs, with the

interpretation that those who moved despite having low income were people who found a cheap

way to move.  Unfortunately, unobserved heterogeneity in this form cannot be accommodated

within the extreme value framework, so that an additional level of numerical integration is needed

to obtain the choice probabilities.



26

Bibliography

Archdeacon, Thomas J. Becoming American: An Ethnic History. New York: The Free Press.
1983

Barro, Robert J. and Xavier Sala-i-Martin, “Convergence across States and Regions,” Brookings
Papers on Economic Activity, 1991, 1, 107-158.

Banks, Jeffrey S.  and Rangarajan K. Sundaram, “Switching Costs and the Gittins Index,”
Econometrica, 62 (3), May 1994, 687-694.

Blanchard, Olivier Jean and Lawrence F. Katz, “Regional Evolutions,” Brookings Papers on
Economic Activity, 1992, 1, 1-37.

Blank, Rebecca M. (1988) "The Effect of Welfare and Wage Levels on the Location Decisions of 
Female-Headed Households," Journal of Urban Economics 24, 186-211.

Borjas, George J., “Immigration and Welfare Magnets,” Journal of Labor Economics, 17 (4),
Part 1, October 1999, 607-637.

Borjas, George J., Stephen G. Bronars and Stephen J. Trejo, “Self-Selection and Internal
Migration in the United States,” Journal of Urban Economics, 32, September 1992,
159-185.

Center for Human Resource Research, NLS Handbook 1995: The National Longitudinal Surveys.
The Ohio State University, Columbus, Ohio.

DaVanzo, Julie S. and Peter A. Morrison (1981) "Return and Other Sequences of Migration in
the United States," Demography 18: 85-101.

El-Gamal, Mahmoud A., “A Dynamic Migration Model with Uncertainty,” Journal of Economic
Dynamics and Control, 18(1994), 511-538.

French, Eric, “Essays on the Dynamics of Hours Worked, Wages, and Health,” unpublished Ph.D.
thesis, University of Wisconsin-Madison.

Grogger, Jeff and Charles Michalopoulos, “Welfare Dynamics Under Term Limits,” NBER
Working Paper No. W7353, September, 1999.

Heckman, James J., and James R. Walker, “Forecasting Aggregate Period-Specific Birth Rates:
The Time Series Properties of a Microdynamic Neoclassical Model of Fertility,' Journal of
the American Statistical Association, 84 (December, 1989): 958-965

Keane, Michael P. and Kenneth I. Wolpin, “The Career Decisions of Young Men,” Journal of
Political Economy, 105(3), June 1997, 473-522.

Levine, Phillip B., and  David J. Zimmerman “An Empirical Analysis of the Welfare Magnet
Debate Using the NLSY,” NBER Working Paper No. W5264, September 1995

McCall, B. P. and J. J. McCall (1987) “A Sequential Study of Migration and Job Search,” Journal
of Labor Economics 5 (October 1987): 452-476.

McFadden, D.  “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka (ed.)
Frontiers in Econometrics, New York, Academic Press, 1973.



27

McFadden, D. (1981) “Econometric Models of Probablistic Choice,” in Structural Estimation of
Discrete Data with Econometric Applications.  Edited by C. Manski and D. McFadden. 
Cambridge, MA: MIT Press. 

Meyer, Bruce D.  “Do the Poor Move to Receive Higher Welfare Benefits?” Northwestern
University, October 1999.

Miller, Robert A., “Job Matching and Occupational Choice”, Journal of Political Economy,
December 1984, vol. 92, no. 6, 1086-1120.

Moffitt, Robert (1992), "Incentive Effects of the United States Welfare System: A Review,"
Journal of Economic Literature  30 (March): 1-61.

National Research Council, (1995) Measuring Poverty: A New Approach.  Edited by Constance
F. Citro and Robert T. Michael.  Washington D.C.: National Academy Press. 1995.

Neal, Derek, "The Complexity of Job Mobility of Young Men," Journal of Labor Economics,
April, 1999, 237-261.

Roberts, Bryan R. “Socially Expected Durations and the Economic Adjustment of Immigrants,” in
The Economic Sociology of Immigration: Essays on Networks, Ethnicity, and
Entrepreneurship. Edited by Alejandro Portes.  New York: Russell Sage Foundation.
1995.

Rust, John (1987) “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold
Zurcher,” Econometrica, 55 (5), September 1987, 999-1033.

Rust, John (1994), “Structural Estimation of Markov Decision Processes,”in Handbook of
Econometrics, Volume IV. Edited by Robert F. Engle and Daniel L. McFadden.  New
York: Elsevier.

Rust, John (1996), "Numerical Dynamic Programming," in Handbook of Computational
Economics, North Holland, H. Amman, D. Kenrick, and J. Rust eds.

Rust, John and Christopher Phelan (1997) “How Social Security and Medicare Affect Retirement
Behavior in a World of Incomplete Markets,” Econometrica 65 (4), July 1997, 781-832.

Topel, Robert H., “Local Labor Markets,” Journal of Political Economy, 1986, 94(3), part 2,
S111-S143.

Van der Klaauw, Wilbert (1996) “Female Labor Supply and Marital Status Decisions: A Life-
Cycle Model,” Review of Economic Studies 63: 199-235.

Walker, James R. (1994) "Migration Among Low-Income Households: Helping the Witch
Doctors Reach Consensus," Discussion Paper, #94-1032, Institute For Research on
Poverty.

Weizman, Martin L., “Optimal Search for the Best Alternative”Econometrica, Vol. 47, No. 3.
(May, 1979), 641-654.



28

College, Median 1979 Wage, $19894.81 16.19

High School, Median 1979 Wage, $19894.81 16.19

Some College, Median 1979 Wage, $19894.81 16.19

College, Median 1989 Wage4.81 16.19

High School, Median 1989 Wage4.81 16.19

Some College, Median 1989 Wage4.81 16.19

Figure 1 SMSA Wage Distribution 1980 and 1990 Pums



Figure 2 High-Wage and Low-Wage Markets by Education



Figure 3  Persistence of Geographical Wage Differentials 


